用途:返回一个分布的不对称度。它反映以平均值为中心的分布的不对称程度,正不对称度表示不对称边的分布更趋向正值。负不对称度表示不对称边的分布更趋向负值。
语法:SKEW(number1,number2,...)。
参数:Number1,number2...是需要计算不对称度的1到30个参数。包括逗号分隔的数值、单一数组和名称等。
实例:公式“=SKEW({22,23,29,19,38,27,25},{16,15,19,17,15,14,34})”返回0.854631382。
62.SLOPE
用途:返回经过给定数据点的线性回归拟合线方程的斜率(它是直线上任意两点的垂直距离与水平距离的比值,也就是回归直线的变化率)。
语法:SLOPE(known_y’s,known_x’s)
参数:Known_y’s为数字型因变量数组或单元格区域,Known_x’s为自变量数据点集合。
实例:公式“=SLOPE({22,23,29,19,38,27,25},{16,15,19,17,15,14,34})”返回-0.100680934。
63.SMALL
用途:返回数据集中第k个最小值,从而得到数据集中特定位置上的数值。
语法:SMALL(array,k)
参数:Array是需要找到第k个最小值的数组或数字型数据区域,K为返回的数据在数组或数据区域里的位置(从小到大)。
实例:如果如果A1=78、A2=45、A3=90、A4=12、A5=85,则公式“=SMALL(A1:A5,3)”返回78。
64.STANDARDIZE
用途:返回以mean为平均值,以standard-dev为标准偏差的分布的正态化数值。
语法:STANDARDIZE(x,mean,standard_dev)
参数:X为需要进行正态化的数值,Mean分布的算术平均值,Standard_dev为分布的标准偏差。
实例:公式“=STANDARDIZE(62,60,10)”返回0.2。
65.STDEV
用途:估算样本的标准偏差。它反映了数据相对于平均值(mean)的离散程度。
语法:STDEV(number1,number2,...)
参数:Number1,number2,...为对应于总体样本的1到30个参数。可以使用逗号分隔的参数形式,也可使用数组,即对数组单元格的引用。
注意:STDEV函数假设其参数是总体中的样本。如果数据是全部样本总体,则应该使用STDEVP函数计算标准偏差。同时,函数忽略参数中的逻辑值(TRUE或FALSE)和文本。如果不能忽略逻辑值和文本,应使用STDEVA函数。
实例:假设某次考试的成绩样本为A1=78、A2=45、A3=90、A4=12、A5=85,则估算所有成绩标准偏差的公式为“=STDEV(A1:A5)”,其结果等于33.00757489。
66.STDEVA
用途:计算基于给定样本的标准偏差。它与STDEV函数的区别是文本值和逻辑值(TRUE或FALSE)也将参与计算。
语法:STDEVA(value1,value2,...)
参数:value1,value2,...是作为总体样本的1到30个参数。可以使用逗号分隔参数的形式,也可以使用单一数组,即对数组单元格的引用。
实例:假设某次考试的部分成绩为A1=78、A2=45、A3=90、A4=12、A5=85,则估算所有成绩标准偏差的公式为“=STDEVA(A1:A5)”,其结果等于33.00757489。
67.STDEVP
用途:返回整个样本总体的标准偏差。它反映了样本总体相对于平均值(mean)的离散程度。
语法:STDEVP(number1,number2,...)
参数:Number1,number2,...为对应于样本总体的1到30个参数。可以使用逗号分隔参数的形式,也可以使用单一数组,即对数组单元格的引用。
注意:STDEVP函数在计算过程中忽略逻辑值(TRUE或FALSE)和文本。如果逻辑值和文本不能忽略,应当使用STDEVPA函数。